产品文档11.3. 模型全部性能数据

11.3. 模型全部性能数据

2026-02-07 20:34:43

11.3.1. MobileNetv1

  • INPUT SIZE: 1x224x224x3

  • C(GOPs): 1.14

  • FPS: 3793.70

  • ITC(ms): 0.901

  • TCPP(ms): 0.061

  • RV(mb): 3.89

  • WV(mb): 0.02

  • Dataset: ImageNet

  • ACCURACY: Top1: 0.7061(FLOAT)/0.7026(INT8)

  • LINKS: https://github.com/shicai/MobileNet-Caffe

 

11.3.2. MobileNetv2

  • INPUT SIZE: 1x224x224x3

  • C(GOPs): 0.63

  • FPS: 4197.62

  • ITC(ms): 0.767

  • TCPP(ms): 0.090

  • RV(mb): 2.94

  • WV(mb): 0.02

  • Dataset: ImageNet

  • ACCURACY: Top1: 0.7265(FLOAT)/0.7153(INT8)

 

11.3.3. GoogleNet

 

11.3.4. Resnet18

 

11.3.5. EfficientNet_Lite0

 

11.3.6. EfficientNet_Lite1

 

11.3.7. EfficientNet_Lite2

 

11.3.8. EfficientNet_Lite3

 

11.3.9. EfficientNet_Lite4

 

11.3.10. Vargconvnet

 

11.3.11. Efficientnasnet_m

 

11.3.12. Efficientnasnet_s

 

11.3.13. YOLOv2_Darknet19

  • INPUT SIZE: 1x608x608x3

  • C(GOPs): 62.94

  • FPS: 280.60

  • ITC(ms): 7.264

  • TCPP(ms): 1.680

  • RV(mb): 47.35

  • WV(mb): 2.43

  • Dataset: COCO

  • ACCURACY: [IoU=0.50:0.95]= 0.2760(FLOAT)/0.2730(INT8)

  • LINKS: https://pjreddie.com/darknet/yolo

 

11.3.14. YOLOv3_Darknet53

  • INPUT SIZE: 1x416x416x3

  • C(GOPs): 65.87

  • FPS: 213.63

  • ITC(ms): 9.521

  • TCPP(ms): 9.937

  • RV(mb): 56.84

  • WV(mb): 3.63

  • Dataset: COCO

  • ACCURACY: [IoU=0.50:0.95]= 0.3330(FLOAT)/0.3350(INT8)

  • LINKS: https://github.com/ChenYingpeng/caffe-yolov3

 

11.3.15. YOLOv5x_v2.0

 

11.3.16. Ssd_mobilenetv1

 

11.3.17. Centernet_resnet101

 

11.3.18. YOLOv3_VargDarknet

 

11.3.19. Deeplabv3plus_efficientnetb0

 

11.3.20. Fastscnn_efficientnetb0

 

11.3.21. Deeplabv3plus_efficientnetm1

 

11.3.22. Deeplabv3plus_efficientnetm2

 

11.3.23. Resnet50

  • INPUT SIZE: 1x224x224x3

  • C(GOPs): 7.72

  • FPS: 683.52

  • ITC(ms): 3.144

  • TCPP(ms): 0.090

  • RV(mb): 24.03

  • WV(mb): 0.52

  • Dataset: ImageNet

  • ACCURACY: Top1: 0.7737(FLOAT)/0.7674(INT8)

 

11.3.24. VargNetV2

  • INPUT SIZE: 1x224x224x3

  • C(GOPs): 0.72

  • FPS: 3530.60

  • ITC(ms): 0.863

  • TCPP(ms): 0.090

  • RV(mb): 3.68

  • WV(mb): 0.03

  • Dataset: ImageNet

  • ACCURACY: Top1: 0.7394(FLOAT)/0.7321(INT8)

 

11.3.25. Swint

  • INPUT SIZE: 1x224x224x3

  • C(GOPs): 8.98

  • FPS: 138.90

  • ITC(ms): 14.718

  • TCPP(ms): 0.088

  • RV(mb): 40.95

  • WV(mb): 1.31

  • Dataset: ImageNet

  • ACCURACY: Top1: 0.8024(FLOAT)/0.7947(INT8)

 

11.3.26. MixVarGENet

  • INPUT SIZE: 1x224x224x3

  • C(GOPs): 2.07

  • FPS: 5809.93

  • ITC(ms): 0.646

  • TCPP(ms): 0.089

  • RV(mb): 2.26

  • WV(mb): 0.02

  • Dataset: ImageNet

  • ACCURACY: Top1: 0.7133(FLOAT)/0.7066(INT8)

 

11.3.27. Fcos_efficientnetb0

  • INPUT SIZE: 1x512x512x3

  • C(GOPs): 5.02

  • FPS: 1757.02

  • ITC(ms): 1.466

  • TCPP(ms): 0.247

  • RV(mb): 4.73

  • WV(mb): 0.30

  • Dataset: COCO

  • ACCURACY: [IoU=0.50:0.95]= 0.3626(FLOAT)/0.3562(INT8)

 

11.3.28. Fcos_efficientnetb2

 

11.3.29. Fcos_efficientnetb3

 

11.3.30. Pointpillars_kitti_car

  • INPUT SIZE: 1x1x150000x4

  • C(GOPs): 66.82

  • FPS: 117.31

  • ITC(ms): 32.183

  • TCPP(ms): 2.566

  • RV(mb): 43.30

  • WV(mb): 24.47

  • Dataset: Kitti3d

  • ACCURACY: APDet= 0.7731(FLOAT)/0.7676(INT8)

 

11.3.31. RetinaNet_vargnetv2_fpn

  • INPUT SIZE: 1x1024x1024x3

  • C(GOPs): 301.27

  • FPS: 80.92

  • ITC(ms): 24.689

  • TCPP(ms): 6.540

  • RV(mb): 74.94

  • WV(mb): 37.52

  • Dataset: COCO

  • ACCURACY: [IoU=0.50:0.95]= 0.3151(FLOAT)/0.3129(INT8)

 

11.3.32. Yolov3_mobilenetv1

  • INPUT SIZE: 1x416x416x3

  • C(GOPs): 20.58

  • FPS: 491.66

  • ITC(ms): 4.334

  • TCPP(ms): 1.662

  • RV(mb): 25.87

  • WV(mb): 1.53

  • Dataset: VOC

  • ACCURACY: mAP: 0.7657(FLOAT)/0.7581(INT8)

 

11.3.33. Ganet_mixvargenet

  • INPUT SIZE: 1x320x800x3

  • C(GOPs): 10.74

  • FPS: 2424.77

  • ITC(ms): 1.155

  • TCPP(ms): 0.953

  • RV(mb): 1.36

  • WV(mb): 0.21

  • Dataset: CuLane

  • ACCURACY: F1Score: 0.7949(FLOAT)/0.7872(INT8)

 

11.3.34. DETR_resnet50

  • INPUT SIZE: 1x800x1333x3

  • C(GOPs): 202.99

  • FPS: 47.40

  • ITC(ms): 41.375

  • TCPP(ms): 1.666

  • RV(mb): 174.56

  • WV(mb): 100.56

  • Dataset: MS COCO

  • ACCURACY: [IoU=0.50:0.95]= 0.3570(FLOAT)/0.3134(INT8)

 

11.3.35. DETR_efficientnetb3

  • INPUT SIZE: 1x800x1333x3

  • C(GOPs): 67.31

  • FPS: 62.28

  • ITC(ms): 32.334

  • TCPP(ms): 1.669

  • RV(mb): 119.12

  • WV(mb): 63.56

  • Dataset: MS COCO

  • ACCURACY: [IoU=0.50:0.95]= 0.3721(FLOAT)/0.3597(INT8)

 

11.3.36. FCOS3D_efficientnetb0

  • INPUT SIZE: 1x512x896x3

  • C(GOPs): 19.94

  • FPS: 604.57

  • ITC(ms): 3.994

  • TCPP(ms): 8.708

  • RV(mb): 11.55

  • WV(mb): 5.10

  • Dataset: nuscenes

  • ACCURACY: NDS: 0.3062(FLOAT)/0.3019(INT8)

 

11.3.37. Centerpoint_pointpillar

  • INPUT SIZE: 300000x5

  • C(GOPs): 127.73

  • FPS: 100.64

  • ITC(ms): 24.618

  • TCPP(ms): 52.566

  • RV(mb): 39.37

  • WV(mb): 19.04

  • Dataset: nuscenes

  • ACCURACY: NDS: 0.5832(FLOAT)/0.5814(INT8)

 

11.3.38. Keypoint_efficientnetb0

  • INPUT SIZE: 1x128x128x3

  • C(GOPs): 0.45

  • FPS: 3221.86

  • ITC(ms): 0.914

  • TCPP(ms): 0.361

  • RV(mb): 4.41

  • WV(mb): 0.04

  • Dataset: carfusion

  • ACCURACY: PCK(alpha=0.1): 0.9433(FLOAT)/0.9431(INT8)

 

11.3.39. Unet_mobilenetv1

  • INPUT SIZE: 1x1024x2048x3

  • C(GOPs): 7.36

  • FPS: 1050.12

  • ITC(ms): 2.129

  • TCPP(ms): 0.589

  • RV(mb): 6.96

  • WV(mb): 2.88

  • Dataset: Cityscapes

  • ACCURACY: mIoU: 0.6802(FLOAT)/0.6753(INT8)

 

11.3.40. Pwcnet_pwcnetneck

  • INPUT SIZE: 1x384x512x6

  • C(GOPs): 81.71

  • FPS: 161.49

  • ITC(ms): 12.671

  • TCPP(ms): 0.304

  • RV(mb): 27.65

  • WV(mb): 15.32

  • Dataset: flyingchairs

  • ACCURACY: EndPointError: 1.4117(FLOAT)/1.4075(INT8)

 

11.3.41. Motr_efficientnetb3

  • INPUT SIZE: image: 1x800x1422x3 track_query: 1x2x128x156 ref_points: 1x2x128x4 mask_query: 1x1x256x1

  • C(GOPs): 64.43

  • FPS: 72.72

  • ITC(ms): 26.535

  • TCPP(ms): 22.895

  • RV(mb): 73.95

  • WV(mb): 28.09

  • Dataset: Mot17

  • ACCURACY: MOTA: 0.5802(FLOAT)/0.5776(INT8)

 

11.3.42. Bev_lss_efficientnetb0_multitask

  • INPUT SIZE: image: 6x256x704x3 points(0&1): 10x128x128x2

  • C(GOPs): 2.41

  • FPS: 278.20

  • ITC(ms): 7.925

  • TCPP(ms): 17.903

  • RV(mb): 2.56

  • WV(mb): 1.99

  • Dataset: nuscenes

  • ACCURACY: NDS: 0.3006(FLOAT)/0.3000(INT8) MeanIOU: 0.5180(FLOAT)/0.5148(INT8)

 

11.3.43. Bev_gkt_mixvargenet_multitask

  • INPUT SIZE: image: 6x512x960x3 points(0-8): 6x64x64x2

  • C(GOPs): 34.49

  • FPS: 85.83

  • ITC(ms): 23.624

  • TCPP(ms): 18.009

  • RV(mb): 10.98

  • WV(mb): 6.89

  • Dataset: nuscenes

  • ACCURACY: NDS: 0.2809(FLOAT)/0.2791(INT8) MeanIOU: 0.4851(FLOAT)/0.4836(INT8)

 

11.3.44. Bev_ipm_efficientnetb0_multitask

  • INPUT SIZE: image: 6x512x960x3 points: 6x128x128x2

  • C(GOPs): 8.83

  • FPS: 209.61

  • ITC(ms): 9.739

  • TCPP(ms): 17.980

  • RV(mb): 5.14

  • WV(mb): 3.63

  • Dataset: nuscenes

  • ACCURACY: NDS: 0.3053(FLOAT)/0.3041(INT8) MeanIOU: 0.5146(FLOAT)/0.5099(INT8)

 

11.3.45. Bev_ipm_4d_efficientnetb0_multitask

  • INPUT SIZE: image: 6x512x960x3 points: 6x128x128x2 prev_feat: 1x128x128x64 prev_point: 1x128x128x2

  • C(GOPs): 8.93

  • FPS: 188.10

  • ITC(ms): 10.565

  • TCPP(ms): 18.169

  • RV(mb): 5.70

  • WV(mb): 3.99

  • Dataset: nuscenes

  • ACCURACY: NDS: 0.3724(FLOAT)/0.3725(INT8) MeanIOU: 0.5290(FLOAT)/0.5388(INT8)

 

11.3.46. Detr3d_efficientnetb3_nuscenes

  • INPUT SIZE: coords(0-3): 6x4x256x2 image: 6x512x1408x3 masks: 1x4x256x24

  • C(GOPs): 37.55

  • FPS: 27.04

  • ITC(ms): 69.306

  • TCPP(ms): 2.410

  • RV(mb): 57.77

  • WV(mb): 40.23

  • Dataset: nuscenes

  • ACCURACY: NDS: 0.3304(FLOAT)/0.3283(INT8)

 

11.3.47. Petr_efficientnetb3_nuscenes

  • INPUT SIZE: image: 6x512x1408x3 pos_embed: 1x96x44x256

  • C(GOPs): 36.24

  • FPS: 8.41

  • ITC(ms): 226.049

  • TCPP(ms): 2.418

  • RV(mb): 301.52

  • WV(mb): 167.79

  • Dataset: nuscenes

  • ACCURACY: NDS: 0.3760(FLOAT)/0.3733(INT8)

 

11.3.48. Centerpoint_mixvargnet_multitask¶

  • INPUT SIZE: 300000x5

  • C(GOPs): 51.45

  • FPS: 106.09

  • ITC(ms): 23.532

  • TCPP(ms): 50.427

  • RV(mb): 33.84

  • WV(mb): 14.45

  • Dataset: nuscenes

  • ACCURACY: NDS: 0.5809(FLOAT)/0.5762(INT8) MeanIOU: 0.9129(FLOAT)/0.9122(INT8)

 

11.3.49. Stereonetplus_mixvargenet

  • INPUT SIZE: 2x544x960x3

  • C(GOPs): 24.29

  • FPS: 244.52

  • ITC(ms): 6.407

  • TCPP(ms): 15.433

  • RV(mb): 7.02

  • WV(mb): 6.74

  • Dataset: SceneFlow

  • ACCURACY: EPE: 1.1270(FLOAT)/1.1352(INT8)

 

11.3.50. Densetnt_vectornet

  • INPUT SIZE: goals_2d: 30x1x2048x2 goals_2d_mask: 30x1x2048x1 instance_mask: 30x1x96x1 lane_feat: 30x9x64x11 traj_feat: 30x19x32x9

  • C(GOPs): 0.42

  • FPS: 86.58

  • ITC(ms): 26.587

  • TCPP(ms): 10.518

  • RV(mb): 3.29

  • WV(mb): 2.92

  • Dataset: Argoverse 1

  • ACCURACY: minFDA: 1.2974(FLOAT)/1.3038(INT8)

下一篇:12. 附录
文档内容对你是否有帮助?